Geothermal heating, diapycnal mixing and the abyssal circulation
نویسندگان
چکیده
The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent arguments. First, we show that a uniform geothermal heat flux close to the observed average (86.4mWm−2) supplies as much heat to near-bottom water as a diapycnal mixing rate of ∼10−4 m2 s−1 – the canonical value thought to be responsible for the magnitude of the present-day abyssal circulation. This parity raises the possibility that geothermal heating could have a dynamical impact of the same order. Second, we estimate the magnitude of geothermally-induced circulation with the density-binning method (Walin, 1982), applied to the observed thermohaline structure of Levitus (1998). The method also allows to investigate the effect of realistic spatial variations of the flux obtained from heatflow measurements and classical theories of lithospheric cooling. It is found that a uniform heatflow forces a transformation of ∼6 Sv at σ4=45.90, which is of the same order as current best estimates of AABW circulation. This transformation can be thought of as the geothermal circulation in the absence of mixing and is very similar for a realistic heatflow, albeit shifted towards slightly lighter density classes. Third, we use a general ocean circulation model in global configuration to perform three sets of experiments: (1) a thermally homogenous abyssal ocean with and without uniform geothermal heating; (2) a more stratified abyssal ocean subject to (i) no geothermal heating, (ii) a constant heat flux of 86.4mWm−2, (iii) a realistic, spatially varying heat flux of identical global average; (3) experiments (i) and (iii) with enhanced vertical mixing at depth. Geothermal heating and diapycnal mixing are found to interact non-linearly through the density field, with geothermal heating eroding the deep stratification supporting a downward diffusive flux, while diapycnal mixing acts to map near-surface temperature gradients Correspondence to: J. Emile-Geay ([email protected]) onto the bottom, thereby altering the density structure that supports a geothermal circulation. For strong vertical mixing rates, geothermal heating enhances the AABW cell by about 15% (2.5 Sv) and heats up the last 2000m by∼0.15◦C, reaching a maximum of by 0.3◦C in the deep North Pacific. Prescribing a realistic spatial distribution of the heat flux acts to enhance this temperature rise at mid-depth and reduce it at great depth, producing a more modest increase in overturning than in the uniform case. In all cases, however, poleward heat transport increases by ∼10% in the Southern Ocean. The three approaches converge to the conclusion that geothermal heating is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies.
منابع مشابه
Control of Lower-Limb Overturning Circulation in the Southern Ocean by Diapycnal Mixing and Mesoscale Eddy Transfer
A simple model is developed of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual-mean theory. It is hypothesized that the strength of the lower-limb overturning ( ) is strongly controlled by the magnitude of abyssal diapycnal mixing ( ) and that of mesoscale eddy transfer (K ). In particular, it is argued that K. The scaling and associated theory f...
متن کاملMixing and diapycnal advection in the ocean
In the stratified ocean, vertical motions arise from both adiabatic and diabatic mechanisms. Diapycnal advection is the vertical component of flow across an isopycnal surface which occurs when mixing produces a divergent flux of buoyancy. Buoyancy forcing of the lateral flow by vortex stretching occurs when diapycnal advection rates vary with depth. Microstructure observations of enhanced turbu...
متن کاملControl of lower limb circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer
We develop a simple model of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual mean theory. We hypothesize that the strength of the lower limb (Ψ) is strongly controlled by the magnitude of abyssal diapycnal mixing (κ), and that of mesoscale eddy transfer (K). In particular, we argue that Ψ ∝ √ κK. The scaling and associated theory find support in ...
متن کاملBaroclinic Wave Drag and Barotropic to Baroclinic Energy Transfer at Sills as Evidenced by Tidal Retardation, Seiche Damping and Diapycnal Mixing in Fjords
Fluctuating barotropic flow over sills in stratified water is subjected to baroclinic wave drag and accompanying barotropic to baroclinic energy transfer. In fjords, this process has notable consequences, for instance, tidal retardation across fjord sills, damping of barotropic seiches and enhanced diapycnal mixing in the basin water. These may be computed from simple models only including loca...
متن کاملThe Zonal Dimension of the Indian Ocean Meridional Overturning Circulation
The three-dimensional structure of the meridional overturning circulation (MOC) in the deep Indian Ocean is investigated with an eddy-permitting ocean model. The amplitude of the modeled deep Indian Ocean MOC is 5.6 Sv (1 Sv 10 m s ), a broadly realistic but somewhat weak overturning. Although the model parameterization of diapycnal mixing is inaccurate, the model’s short spinup allows the effe...
متن کامل